Command line programs
Last updated on 2024-07-25 | Edit this page
Overview
Questions
- How can I write my own command line programs?
Objectives
- Use the
argparse
library to manage command-line arguments in a program. - Structure Python scripts according to a simple template.
We’ve arrived at the point where we have successfully defined the functions required to plot the precipitation data.
We could continue to execute these functions from the Jupyter notebook, but in most cases notebooks are simply used to try things out and/or take notes on a new data analysis task. Once you’ve scoped out the task (as we have for plotting the precipitation climatology), that code can be transferred to a Python script so that it can be executed at the command line. It’s likely that your data processing workflows will include command line utilities from the CDO and NCO projects in addition to Python code, so the command line is the natural place to manage your workflows (e.g. using shell scripts or make files).
In general, the first thing that gets added to any Python script is the following:
The reason we need these two lines of code is that running a Python script in bash is very similar to importing that file in Python. The biggest difference is that we don’t expect anything to happen when we import a file, whereas when running a script we expect to see some output (e.g. an output file, figure and/or some text printed to the screen).
The __name__
variable exists to handle these two
situations. When you import a Python file __name__
is set
to the name of that file (e.g. when importing script.py,
__name__
is script
), but when running a script
in bash __name__
is always set to __main__
.
The convention is to call the function that produces the output
main()
, but you can call it whatever you like.
The next thing you’ll need is a library to parse the command line for input arguments. The most widely used option is argparse.
Putting those together, here’s a template for what most python command line programs look like:
PYTHON
import argparse
#
# All your functions (that will be called by main()) go here.
#
def main(inargs):
"""Run the program."""
print("Input file: ", inargs.infile)
print("Output file: ", inargs.outfile)
if __name__ == "__main__":
description = "Print the input arguments to the screen."
parser = argparse.ArgumentParser(description=description)
parser.add_argument("infile", type=str, help="Input file name")
parser.add_argument("outfile", type=str, help="Output file name")
args = parser.parse_args()
main(args)
By running script_template.py
at the command line we’ll
see that argparse
handles all the input arguments:
OUTPUT
Input file: in.nc
Output file: out.nc
It also generates help information for the user:
OUTPUT
usage: script_template.py [-h] infile outfile
Print the input arguments to the screen.
positional arguments:
infile Input file name
outfile Output file name
optional arguments:
-h, --help show this help message and exit
and issues errors when users give the program invalid arguments:
OUTPUT
usage: script_template.py [-h] infile outfile
script_template.py: error: the following arguments are required: outfile
Using this template as a starting point, we can add the functions we
developed previously to a script called
plot_precipitation_climatology.py
.
PYTHON
import xarray as xr
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import cmocean
import argparse
def convert_pr_units(da):
"""Convert kg m-2 s-1 to mm day-1.
Args:
da (xarray.DataArray): Precipitation data
"""
da.data = darray.data * 86400
da.attrs["units"] = "mm/day"
return da
def create_plot(clim, model, season, gridlines=False):
"""Plot the precipitation climatology.
Args:
clim (xarray.DataArray): Precipitation climatology data
model (str): Name of the climate model
season (str): Season
Kwargs:
gridlines (bool): Select whether to plot gridlines
"""
fig = plt.figure(figsize=[12,5])
ax = fig.add_subplot(111, projection=ccrs.PlateCarree(central_longitude=180))
clim.sel(season=season).plot.contourf(
ax=ax,
levels=np.arange(0, 13.5, 1.5),
extend="max",
transform=ccrs.PlateCarree(),
cbar_kwargs={"label": clim.units},
cmap=cmocean.cm.haline_r,
)
ax.coastlines()
if gridlines:
plt.gca().gridlines()
title = f"{model} precipitation climatology ({season})"
plt.title(title)
def main(inargs):
"""Run the program."""
ds = xr.open_dataset(inargs.pr_file)
clim = ds["pr"].groupby("time.season").mean("time", keep_attrs=True)
clim = convert_pr_units(clim)
create_plot(clim, ds.attrs["source_id"], inargs.season)
plt.savefig(
inargs.output_file,
dpi=200,
bbox_inches="tight",
facecolor="white",
)
if __name__ == "__main__":
description='Plot the precipitation climatology.'
parser = argparse.ArgumentParser(description=description)
parser.add_argument("pr_file", type=str, help="Precipitation data file")
parser.add_argument("season", type=str, help="Season to plot")
parser.add_argument("output_file", type=str, help="Output file name")
args = parser.parse_args()
main(args)
… and then run it at the command line:
BASH
$ python plot_precipitation_climatology.py data/pr_Amon_ACCESS-CM2_historical_r1i1p1f1_gn_201001-201412.nc MAM pr_Amon_ACCESS-CM2_historical_r1i1p1f1_gn_201001-201412-MAM-clim.png
Choices
For this series of challenges, you are required to make improvements
to the plot_precipitation_climatology.py
script that you
downloaded earlier from the setup tab at the top of the page.
For the first improvement, edit the line of code that defines the
season command line argument
(parser.add_argument("season", type=str, help="Season to plot")
)
so that it only allows the user to input a valid three letter
abbreviation (i.e. ["DJF", "MAM", "JJA", "SON"]
).
(Hint: Read about the choices
keyword argument at the argparse
tutorial.)
Gridlines
Add an optional command line argument that allows the user to add gridlines to the plot.
(Hint: Read about the action="store_true"
keyword
argument at the argparse
tutorial.)
Make the following additions to
plot_precipitation_climatology.py
(code omitted from this
abbreviated version of the script is denoted ...
):
Colorbar levels
Add an optional command line argument that allows the user to specify the tick levels used in the colourbar
(Hint: You’ll need to use the nargs='*'
keyword
argument.)
Make the following additions to
plot_precipitation_climatology.py
(code omitted from this
abbreviated version of the script is denoted ...
):
PYTHON
...
def create_plot(clim, model_name, season, gridlines=False, levels=None):
"""Plot the precipitation climatology.
...
Kwargs:
gridlines (bool): Select whether to plot gridlines
levels (list): Tick marks on the colorbar
"""
if not levels:
levels = np.arange(0, 13.5, 1.5)
...
clim.sel(season=season).plot.contourf(
ax=ax,
...,
)
...
def main(inargs):
...
create_plot(
clim,
ds.attrs["source_id"],
inargs.season,
gridlines=inargs.gridlines,
levels=inargs.cbar_levels,
)
...
if __name__ == "__main__":
...
parser.add_argument(
"--cbar_levels",
type=float,
nargs="*",
default=None,
help="list of levels / tick marks to appear on the colorbar",
)
...
Free time
Add any other options you’d like for customising the plot (e.g. title, axis labels, figure size).
plot_precipitation_climatology.py
At the conclusion of this lesson your
plot_precipitation_climatology.py
script should look
something like the following:
PYTHON
import xarray as xr
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import cmocean
import argparse
def convert_pr_units(da):
"""Convert kg m-2 s-1 to mm day-1.
Args:
da (xarray.DataArray): Precipitation data
"""
da.data = darray.data * 86400
da.attrs["units"] = "mm/day"
return da
def create_plot(clim, model, season, gridlines=False, levels=None):
"""Plot the precipitation climatology.
Args:
clim (xarray.DataArray): Precipitation climatology data
model (str): Name of the climate model
season (str): Season
Kwargs:
gridlines (bool): Select whether to plot gridlines
levels (list): Tick marks on the colorbar
"""
if not levels:
levels = np.arange(0, 13.5, 1.5)
fig = plt.figure(figsize=[12,5])
ax = fig.add_subplot(111, projection=ccrs.PlateCarree(central_longitude=180))
clim.sel(season=season).plot.contourf(
ax=ax,
levels=levels,
extend="max",
transform=ccrs.PlateCarree(),
cbar_kwargs={"label": clim.units},
cmap=cmocean.cm.haline_r,
)
ax.coastlines()
if gridlines:
plt.gca().gridlines()
title = f"{model} precipitation climatology ({season})"
plt.title(title)
def main(inargs):
"""Run the program."""
ds = xr.open_dataset(inargs.pr_file)
clim = ds["pr"].groupby("time.season").mean("time", keep_attrs=True)
clim = convert_pr_units(clim)
create_plot(
clim,
ds.attrs["source_id"],
inargs.season,
gridlines=inargs.gridlines,
levels=inargs.cbar_levels,
)
plt.savefig(
inargs.output_file,
dpi=200,
bbox_inches="tight",
facecolor="white",
)
if __name__ == "__main__":
description = "Plot the precipitation climatology."
parser = argparse.ArgumentParser(description=description)
parser.add_argument("pr_file", type=str, help="Precipitation data file")
parser.add_argument("season", type=str, help="Season to plot")
parser.add_argument("output_file", type=str, help="Output file name")
parser.add_argument(
"--gridlines",
action="store_true",
default=False,
help="Include gridlines on the plot",
)
parser.add_argument(
"--cbar_levels",
type=float,
nargs="*",
default=None,
help="list of levels / tick marks to appear on the colorbar",
)
args = parser.parse_args()
main(args)
Key Points
- Libraries such as
argparse
can be used the efficiently handle command line arguments. - Most Python scripts have a similar structure that can be used as a template.